158

Journal of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 1, pp. 158~ 166, 2006

Extended Graetz Problem Including Axial Conduction
and Viscous Dissipation in Microtube
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Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve

the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin

method. The hydrodynamically isothermal developed flow is assumed to enter the microtube

with uniform temperature or uniform heat flux boundary condition. The effects of velocity and

temperature jump boundary condition on the microtube wall, axial conduction and viscous

dissipation are included. From the temperature field obtained, the local Nusselt number

distributions on the tube wall are obtained as the dimensionless parameters (Peclet number,

Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each

boundary condition is obtained also in terms of these parameters.
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Number

Nomenclature

A, . Coefficients

B7 : Brinkman number
Br=pw3/k(To—Tw), pwi/ (quR)

C] 1 +8 % Kn

G, 2—F, 2_7&

2 Ft 7+1 Pr

¢p - Specific heat

D Diameter of microtube (D=2R)

F . Tangential momentum accommodation co-
efficient

F: : Thermal accommodation coefficient

k. Heat transfer coefficient

k . Thermal conductivity

Kn . Knudsen number (Kn=A/D)

L : Length of microtube
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: Nusselt number (Nu=hD/k)

. Pressure

. Peclet number (Pe= Re:Pr=w.D/a)
. Prandtl number (Pr=v/a)

: Heat flux

> Radius of microtube

. Eigenfunction

. Cylinderical coordinates

. Reynolds number (Re=wnD/v)
. Temperature

. Fluid velocity

Greek symbols

DT R >R ™K

. Thermal diffusivity

. Eigenvalue

. Specific heat ratio

. Molecular mean free path
. Dynamic viscosity

: Kinematic viscosity

. Dimensionless temperature

0=(T—Tw)/(To—Tw), R(T—T)/(quR)

Subscript

m

. Mean values
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s . Fluid properties at the wall
w . Wall values

0 : Inlet properties

co [ Infinite properties
Superscript

% . Dimensionless variables

1. Introduction

The recent development of microfabrication
technologies such as deep X-ray lithography and
silicon-based micromachining has made it possi-
ble to design of microfluidic devices with micro-
scale dimensions. Microfluidic systems for mani-
pulating fluids in the microscale are widely used
in the application areas such as chemistry, biolo-
gy, material science and MEMS etc. For example,
to design the cooling system of electronic devices
as micro heat exchangers, the knowledge of con-
vection heat transfer in microscale cylindrical or
rectangular passages is required. Many investi-
gations have been performed during the last two
decades for convection heat transfer in micro-
systems and some of the experiments have shown
that fluid flow and heat transfer characteristics in
microgeometry deviate from the well known tra-
ditional approaches based on the continuum as-
sumption (Tuckerman and Pease, 1981 ; Choi et
al., 1991).

For the flow in microtube, the no-slip bound-
ary conditions need to be modified as the radius
of the tube is reduced and slip velocity and tem-
perature jump may occur on the wall. The slip
boundary condition may be used when gases are
at low pressure or for flow in extremely small
passages. The rarefaction effects of a gas are in-
cluded from the Knudsen number K, the ratio
of the mean free path of the gas to the charac-
teristic length of the flow field. Karniadakis and
Beskok (2002) have proposed the range of the
Knudsen number for slip flow as 0.001<Kn<
0.1.

The Graetz problem is a simplified problem of
forced convection heat transfer in a circular tube
in laminar flow, which was solved by Graetz
(1883 ; 1885) analytically assuming fully devel-
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oped laminar flow and neglecting axial conduc-
tion and viscous dissipation. Sellars et al.(1956)
extended the Graetz problem using a more effec-
tive approximation technique for evaluation of
the eigenvalues problem. Lahjomri and Oubarra
(1999) solved the problem to include the effect
of axial conduction in Graetz problem. Barron et
al.(1997) and Ameel et al.(1997) presented an
analytic solution including slip effect for uniform
temperature and uniform heat flux boundary con-
ditions on the circular tube, respectively. Tunc
and Bayazitoglu (2001) solved the energy equa-
tion with slip velocity and temperature jump
boundary conditions in a microtube, including
viscous dissipation but neglecting the axial con-
duction. In the most analysis of the Graetz prob-
lems extended, the both effects of axial conduc-
tion and viscous dissipation are not included. But,
both axial conduction and viscous dissipation
may not be ignored, if liquid metal is working
fluid and fluid velocity is high.

In this paper, we consider the extended Graetz
problem in the circular microtube including the
effects of rarefaction, axial conduction and vis-
cous dissipation altogether. At the entrance, the
temperature starts to be developed from uniform
temperature while the flow is assumed to be fully
developed Poiseuille flow. Two types of heat
boundary condition on the wall, isothermal and
constant heat flux, are considered. By using the
eigenfunction expansion method, the temperature
distributions in the microtube are determined,
and Nusselt number distributions on the wall are
shown for some typical values of the parameters
(Knudsen number K7, Peclet number Pe, and
Brinkman number B7). Nusselt number at far
downstream of the tube is obtained as a function
of the parameters.

2. Analysis

2.1 Uniform temperature on the wall

The steady-state hydrodynamically developed
flow with constant temperature 7y enters into the
microtube as illustrated in Fig. 1. The fluid tem-
perature would change from the value 7p at the
entrance to the value T3 on the walls. Assuming
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Fig. 1 Schematic of a microtube

laminar incompressible flow, the governing ener-
gy equation and boundary condition can be es-
tablished as

pow T8 ()2 30 1

r or or 0z or
T="T at z=0 (2)
g 2=F 2y A 0T _ _
T—Tw= . 7+1Pr o at r=R (3)
a—T=0 at y=0 (4)

or

where w is the fully developed axial velocity
profile in the tube,

= (R) %

which satisfies the slip boundary condition

w=—(2F")a(3;)

Eq. (3) represents the temperature jump bound-

n} (5)

w(r)=—

at r=R (6)

ary condition on the tube wall.
In the typical engineering applications Fy, F
may be taken as unity (Tunc et al., 2001). We

define dimensionless variables

T— Tw 2= 4
To—Tw Tw’ Re- PrR “Pe-R’

_ pwn
R -1

0=
(7)

rr=—r

then dimensionless form of Eq. (1) is

iw* 00 _ 0 <r* 00 >
2 0z* *or* or* (8)
1 %0 ow™ \?
tper gt Bre( G0
where

<1—7*2+4%Kn>

In axisymmetric cylindrical coordinates (7, z),
we may express our flow region as 0<z<<{oo, 0<
7 <1. For convenience, we abbreviate the symbol
* hereafter. Then, the governing equation and
boundary conditions are

1 w20 Li<7ﬁ>
Wor Ty or or (10)
1 3°0 ow
Pe® 0% o2 T BT < or )
=1 at z=0 (11)
0=—20,9 at r=1 (12)
09 _
W*O at »=0 (13)

Since the governing Eq. (10) is not homogeneous,
we need to introduce a new variable.
As z— oo, Eq. (10) becomes

yor(rgp)=-pr(5F) 09

90,
smceg 0.

The fully developed dimensionless temperature
profile G can be derived by integrating Eq. (14)
with boundary conditions Eq. (12)-(13) as

(900 7’ { +8C2} (15)
Now, we set
0(r, 2)=06.(r, 2) +0(7) (16)

then 6y — 0 as z— 0,
Substituting Eq. (16) into Eq. (10), we get
1 06

2 Wz

%%( 801) 1 36

" or Pe? 972 (17)

Note that Eq. (17) is homogeneous and the
method of separation of variables may be used.

Let (7, z2) = i]lAnZn(z) R, (7) then we obtain

two ordinary differential equations
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Zn (2) + BrZn(2) =0 (18)

()L Ry + B [+ L] R =0 (19)

with boundary conditions

Ry, (0) =0, R,(1) =—2C,R; (1) (20)

where (3, is eigenvalue associated with the eigen-
function R, (#). To obtain 8,, R.(7) (n=1,2, 3,
---) numerically, the shooting method for Eq.
(19) is used. The eigenfunctions R, (») (n=1, 2,
3, --+) are not orthogonal unless Pe=oo. For
reference, we show first five eigenvalues and ei-
genfunctions in Fig. 2 for a typical case of
Pe=10° (axial conduction neglected), K7%=0.04,
Br=0. The temperature distribution 8(7, z)
may now be written as eigenfunction series ex-
pansion.
0 (7, 2) =0 (7) +nz=“1A” expl—B5z] Ra(7) (21)
The unknown coefficients A, in Eq. (21) are
determined from the inlet (2=0) boundary con-
dition Eq. (11).

o

”EIA,,R,, (r)=1—06u(7) (22)

To determine unknown coefficients A, in the
Eq. (22), we truncate the infinite series to finite

Pe = 10°(Axial conduction neglected)

R Kn = 0.04
W
075 -\
R .
Wy
o5 i\
(Y
L
025 3y Y :
Y : L S YR LS 4 /
ok (R ARY NS
« IR A AT X
\ Y / g “\ v \\ i
025 W\ SN WK et ~,=
: WX_ AN -7
-, B, 25658
- = = — = [z=6.4258
- Ba=10.3353
-0.75 - ——— = [y =14.2698
B - emisem ljs:15.2205
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Fig. 2 Eigenfunctions corresponding to the first 5

eigenvalues Bi, Bs, -+, 5 for Pe=10° Kn=

0.04, Br=0

terms and use the Galerkin method which mini-
mizes square of the error from Eq. (22) in 0< 7 <
1. From the coefficients A, calculated, dimen-
sionless temperature distribution in the tube is
determined as Eq. (21). The bulk mean tempera-
ture (6n) and Nusselt number at the tube wall
(Nu) may be calculated, respectively, as

2/ (7, 2) vdr (23)

where velcocity profile w(#) is given in Eq. (9).
The average convective heat transfer coefficient
and the heat transferred from the total length L of
the tube may be expressed as

_=%/O.Lh(z) dz (25
q=h27RL(To— Tw) AOin
where
Alm="" R T
N0 (D)

since 0,(0) =1.

2.2 Uniform heat flux on the wall

When the constant heat flux g, is given on the
tube wall as illustrated Fig. 1, the following di-
mensionless variables are redefined as

k(T—T) _ L
QwR ’ Br= QwR (26)

since the temperature of tube wall is not constant.

6=

Substituting Eq. (26) into energy equation Eq.
(1) yields

s

Wz T (27)
2
1 ¢ lz 1By < ow )2
Pe? 0z or

and boundary conditions are

=0 at z=0 (28)
00 SR

a =0 at »=0 (29)
gﬁ 1 at r=1 (30)
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Note that governing equation (27) and boundary
condition (30) are non-homogeneous. Therefore,
we introduce a new variable 6, such that

O(r, 2)=06.(r, 2) +0u(7, 2) (31)
where
(7, z):4[l+4Bﬂz
Ci (32)
+L2 [H_4Br} 2Ci+2—r* Brr
4 C? G C?

We considered energy balance to derive Eq. (32).
Substituting Eq. (31) with Eq. (32) into Eq.
(27)-(30), we obtain

1 96 _1 a 06, 1 6
2 Wz v or <T 87’>+Pez 07 (33)
6 (v, 0)=—0.(7, 0) at z=0 (34)
g—?’l:O at =0, 1 (35)

Since governing equation (33) for ¢ and bound-
ary conditions (35) are now homogeneous, we
constitute eigenvalue problem in similar way as
in the previous section.

Z3 (2) + B2 Zn(2) =0 (36)

{0)+L R B[ Bt | Rur) =0 (37)

R;(0) =R7 (1) =0 (38)

We can calculate eigenvalues and eigenfunctions
using the shooting method. Here, it should be
mentioned that A=0 is one of the egienvalues
and corresponding eigenfunction is 1. Finally, we
write dimensionless temperature profile as

O (7, z) =0.(r, 2) + Ao

+2 A, exp(—pBrz) Ra(7) (39)
where coefficients A,(#=0, 1, 2, ---) are deter-
mined from inlet boundary condition (28) using
Galerkin method.

The Nusselt number is now easily determined
as follows :

Nulz)=—=)==4- =4 (40)

since %:1 at »=1. In Eq. (40), O, is the bulk
mean temperature as defined in Eq. (23). The
wall temperature 6, in Eq. (40) is given by

0s(2) =0(1, 2) +2C; (41)

where <ﬁ> =1 is used also.
0r /r=1

3. Results and Discussion

Our results are compared with those of the
classical Graetz problem (Pe— oo, Br=Kn=
0) to verify the validity of present calculations. In
the calculation, we take Pe=10° instead of Pe=
oo to see the cases where the axial conduction
terms in the energy equations (10) and (27) are
neglected. The comparison shows quite good
agreement, which means that eigenvalues and
eigenfunctions calculated in this work are accu-
rate and our solution method is reasonable. More-
over, it is possible to determine as many eigen-
values and eigenfunctions as required. Therefore,
we may be assured that our results are true for
other values of parameters (Kn, Pe, Br). We
carried out the calculation for K7»=0.04, 0.08,
since slip boundary conditions may be used for
0.001 < K7 <0.1. We assume that working fluid is
air, so Pr=0.7, y=1.4 are used in the calcula-
tions.

3.1 Uniform temperature on the wall

In Fig. 3, the effects of Knudsen number on
heat transfer neglecting axial conduction and
viscous dissipation are shown. For Kn=0, fully
developed Nusselt number approximates to 3.66
which agrees with the result of the classical
Graetz problem. The fully developed Nusselt
number decreases as K increases. This is due to
the fact that the temperature jump on the wall
increases and the temperature gradient on the
wall decreases as K increases. The result from
Barron et al.(1997) showed that the fully devel-
oped Nusselt number increases as K# increases,
because the temperature jump condition was not
considered. If only the velocity slip but tempera-
ture jump is taken into account, the Nusselt num-
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ber shows opposite tendency, which implies that
the velocity slip and temperature jump have op-
posite effects on the Nusselt number. The temper-
ature jump distributions along the tube wall are
shown in Fig. 4 for some Knudsen numbers.
Fig. 5 shows the effect of axial conduction on
heat transfer neglecting viscous dissipation and
slip effect. To show the change with Pe, the
abscissa in Fig. 5 represents z/R instead of z/
(Pe+R) in other figures. As Pe increases, the
Nusselt number increases around the inlet of the
tube, where convection heat transfer is dominant
to the conduction heat transfer. When we take the

10
Nu
Pe=10%Axial conduction neglected)
Br=0
Kn=0
- - Kn=0.04
------- Kn=0.08
3.66
ol v 1y 1
(] 0.25 0.5 0.75 1
Z/iPeR)
Fig. 3 Nusselt number distributions on the wall for

uniform temperature boundary condition.
Rarefied effects are considered neglecting vis-

cous dissipation and axial conduction

s
Pe=10"%Axial conduction neglected)
Br=0
- = = = Kn=0.02
——————— Kn=0.04
— ——~= Kn=0.06
—rimiimim KN=0.08
L. ]
0.75 1

Fig. 4 Temperature jump on the microtube wall for
uniform temperature boundary condition

heat conduction in z-direction into account, the
Nusselt number distribution for Pe=1 is larger
than that obtained by neglecting the heat conduc-
tion in z-direction as shown in Fig. 5. In other
words, the heat transfer to the wall increases if we
consider the axial heat conduction.

In Fig. 6, we show the effect of viscous dis-
sipation on heat transfer neglecting slip effect and
axial conduction. The case of B» =0 represents

20
Nu 'i
\
3 Br=0
3 Kn=0
154 \ — — — — Pe=1 (Axial conduction included)
N e Pe=100 (Axial conduction included)
N Pe=1 (No axial conduction)
i
"\
10 f! \‘\,
\ Sie
\ e
\ T ——
~ s TR
. - -
5 -k TR i
i 366
ol AT .| A P
0 0.25 0.5 0.75 1

zIR
Fig. 5 Nusselt number distributions on the wall for
uniform temperature boundary condition.
Axial conduction effects are considered ne-

glecting viscous dissipation and rarefied
effects
20 - v
Nu i i Pe=10° (Axial conduction neglected)
1 1 Kn=0
150+
10

0 E 1 " 1 L 1 L
0.5 0.75 1
Z/iPeR)

Fig. 6 Nusselt number distribution on the wall for
uniform temperature boundary condition.
Viscous dissipation effects are considered
neglecting axial conduction and rarefied

effects
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entire neglect of viscous dissipation in the tube.
Br > (<) 0 means that Ty> (<) Ty and the fluid
is cooled (heated) in the tube. In particular,
when B7<0(7y< Tw), bulk mean temperature
T may be equal to the wall temperature 73, at a
point 2=z,, where Nusselt number is meaning-
less. This is obvious since T}, increases from 7p to
some temperature above 7, by the heat genera-
tion from the viscous dissipation. To verify this
explanation, 8, (z) is shown in Fig. 7. We notice
that the sign of 6,(z) changes when B7» <0 as
mentioned by Nield et al.(2003). At z— <o, the
fully developed Nusselt number for B7r =0 is
independent of By and different from that for
B7=0 as shown in Fig. 6. The Nusselt number
distribution may be compared with that obtained
by Tunc et al.(2001) for B» =0, K»n=0. Unfor-
tunately, fully developed Nusselt number from
their result is erroneously given as 6.4231, while
that from our result is 9.6 (Fig. 6) which agrees
exactly with the result of Ou and Cheng (1974)
quoted in the book of Shah and London (1978).
Thermally fully developed Nusselt number can be
obtained from the fully developed temperature
field as

8C

1+4C+48C.C, for Br=0
=1 IR 0
Nu —_— 2R (1) for Br=0< )
2/ uR, (r) rdr
0

Note that Nu. for B»#0 is analytically deter-

o B
iy
i Pe=10" (Axial conduction neglected)
‘I.I-\ Kn=0
TR — — — — Br=-0.2
\\\’\'\_ ———— Br=-0.1
WA Br=0
LWy e Br=0.1
&5 WS ———iem B = 0,2
0
0.25 0.5 0.75
Z/iPe R)

Fig. 7 Bulk mean temperature distributions for uni-
form temperature boundary condition

mined value which is independent of B7 while
Nuw for By =0 requires numerical calculation.

3.2 Uniform heat flux on the wall

In Fig. 8, we show the effect of Knudsen num-
ber on heat transfer with Pe=10% B#»=0. For
Kn=0, the problem reduces to the classical
Graetz problem with uniform heat flux boundary
condition. The fully developed Nusselt number
tends to 48/11(=4.36) as z— ©o. As shown in
Fig. 8, the fully developed Nusselt number de-
creases as K increases.

Fig. 9 shows the effect of Pe on the heat
transfer with Kn=B7»=0. Note that here the
abscissa represents z/R. As illustrated in Fig. 9,
the Nusselt number increases as Pe and, for Pe=
I, the Nusselt number is larger when we take
account of axial conduction.

In Fig. 10, the effects of viscous dissipation of
the flow in the tube are considered with K7n=0,
Pe=10°% The case of B»>0 (or B»<0) re-
presents g, >0 (or g»<0) and tube is heated
(or cooled). We can see in Fig. 10 that Nu(z)
decreases as B7 increases. The fully developed
Nusselt number for general case can be derived
from Eq. (32), (40), (41) as

e 8¢t (43)
T CH6CHACHI+48CIC) +4Br 2CH3CH1)
15 -
Nu
Pe=10" {Axial conduction naglacted)
Br=0
Kn=0
- = — - Kn=0.04
TR = Kn=0.08
k
5 'Il\ .36
'\‘: ______________________
0 P - ol el 1
0.25 0.5 0.75 1
Z/PeR!

Fig. 8 Nusselt number distributions on the wall for
uniform heat flux boundary condition. Rare-
fied effects are considered neglecting viscous
dissipation and axial conduction
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Note that this value is independent of Pe. From
Eq. (43), we note that Nz >0 unless By is large
with negative sign. Temperature jump between
the tube wall and adjacent fluid may be written
as

0w(2) —0(1, 2) =2C; (44)
From Eq. (41). This temperature jump (2Cs) is a

constant which is proportional to Kz but in-
dependent of Pe and Br.

25 1
Nu |F i Br=0
i

1A Kn=0
| ) Pe=1 (No axial conduction)
20 L] v = = = = Pe=1 (Axial conduction included)
| \ =r=ime= Pe=100 (Axial conduction included)
\ \,
\
1 .
15 = N
1 ‘\‘
\‘ “"‘-.
\ "'--..,___
L] N S
N~ T T e e
~ T,
5 -k s
136
ol L L 1 I
1] 0.25 0.5 0.75 1
Z/R
Fig. 9 Nusselt number distributions on the wall for

uniform heat flux boundary condition. Axial
conduction effects are considered neglecting
viscous dissipation and rarefied effects

Pe=10" {Axial canduction neglected)
Kn=0

- = ==FBr=-01
——————— Br=-0.05
Br=0
=vmnmo= Br=0,05
—— == Br=0.1

10

o
Fig. 10 Nusselt number distributions on the wall for
uniform heat flux boundary condition. Vis-
cous dissipation effects are considered ne-

glecting axial conduction and rarefied effects
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4. Conclusions

Slip-flow heat transfer in microtube is studied
under conditions that allowed us to analyze the
extended problem of the classical Graetz problem.
Previous studies dealing with the extended Graetz
problem were confined to consider at most two
parameters (Kn, Pe or Kn, Br). In this paper,
however, we included the effects of the three
parameters (Kn, Pe, Br) at the same time with
the uniform temperature and the uniform heat
flux boundary conditions, respectively, on the
wall.

For uniform temperature boundary condition,
the Nusselt number increases with Pe and de-
creases as Kn. For Br=0, the fully developed
Nusselt number is independent of Bz and is
larger than that of B»=0. For uniform heat flux
boundary condition, the Nusselt number increases
with Pe and decreases as Kz and Br.

We have also found the fully developed Nusselt
number analytically for each boundary condition
as a function of Kz and Br.
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